skip to main content


Search for: All records

Creators/Authors contains: "Rucker, Caleb"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available January 1, 2025
  2. Steerable needles are capable of accurately targeting difficult-to-reach clinical sites in the body. By bending around sensitive anatomical structures, steerable needles have the potential to reduce the invasiveness of many medical procedures. However, inserting these needles with curved trajectories increases the risk of tissue damage due to perpendicular forces exerted on the surrounding tissue by the needle’s shaft, potentially resulting in lateral shearing through tissue. Such forces can cause significant tissue damage, negatively affecting patient outcomes. In this work, we derive a tissue and needle force model based on a Cosserat string formulation, which describes the normal forces and frictional forces along the shaft as a function of the planned needle path, friction model and parameters, and tip piercing force. We propose this new force model and associated cost function as a safer and more clinically relevant metric than those currently used in motion planning for steerable needles. We fit and validate our model through physical needle robot experiments in a gel phantom. We use this force model to define a bottleneck cost function for motion planning and evaluate it against the commonly used path-length cost function in hundreds of randomly generated three-dimensional (3D) environments. Plans generated with our force-based cost show a 62% reduction in the peak modeled tissue force with only a 0.07% increase in length on average compared to using the path-length cost in planning. Additionally, we demonstrate planning with our force-based cost function in a lung tumor biopsy scenario from a segmented computed tomography (CT) scan. By directly minimizing the modeled needle-to-tissue force, our method may reduce patient risk and improve medical outcomes from steerable needle interventions.

     
    more » « less
    Free, publicly-accessible full text available June 1, 2024
  3. null (Ed.)
    Developing high-strength continuum robots can be challenging without compromising on the overall size of the robot, the complexity of design and the range of motion. In this work, we explore how the load capacity of continuum robots can drastically be improved through a combination of backbone design and convergent actuation path routing. We propose a rhombus-patterned backbone structure composed of thin walled-plates that can be easily fabricated via 3D printing and exhibits high shear and torsional stiffness while allowing bending. We then explore the effect of combined parallel and converging actuation path routing and its influence on continuum robot strength. Experimentally determined compliance matrices are generated for straight, translation and bending configurations for analysis and discussion. A robotic actuation platform is constructed to demonstrate the applicability of these design choices. 
    more » « less
  4. null (Ed.)